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Hydrodynamics provides the low-energy description of a huge variety of
phenomena in nature. These range from heavy ion collisions to black holes
dynamics, from driven systems to non-equilibrium steady states, etc.

In its most traditional form, hydrodynamics is the effective theory for
conservation laws.
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In this talk: Hydrodynamics for a conserved current with chiral anomaly,
(mostly) in 1+1 dimensions

∂µJ
µ = −2~cE

where E : electric field, c : anomaly coefficient.

Chiral anomaly is a quantum effect. Technically, it is broken by the
measure of the (quantum) path integral

Z =

∫
DψDψ̄ e

i
~S0[ψ,ψ̄]

Hydrodynamic approach:

Neglect energy-momentum conservation

Local equilibrium: ρ = e−
1
T

(H−µ(t,x)Q)
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Motivations I

Edge of quantum Hall systems [Kane,Fisher ’95; Ma,Feldman ’19]

Surface chiral metals [Sur,Lee ’13]

Chiral magnetic effect [Vilenkin ’80] [Son,Spivak ’13] [Yamamoto ’15]

~J ∝ µ~B
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Chiral diffusion

∂µJ
µ = −2cE , (set ~ = 1)

where E : electric field, c : anomaly coefficient.

Jt = n(µ) = χµ+
1

2
χ′µ2 + · · · , Jx = −4cµ− σ∂xµ

−4cµ required by second law [Son,Surowka ’09].

Chiral diffusion:

χ∂tµ− 4c∂xµ− σ∂2
xµ+

1

2
χ′∂tµ

2 = 0
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Motivations II

Hydrodynamic long time tails:

Change qualitatively correlation functions at late time.

[Boon, “Molecular hydrodynamics,” ’91]

Changes analytic structure of high-temperature correlation functions
[Chen-Lin,Delacretaz,Hartnoll ’18]

Momentum conservation causes more violent effects
[Forster,Nelson,Stephen ’74], [Kovtun,Yaffe ’03]. E.g. d = 2:

〈J(ω)J(−ω)〉sym ∼ σ −
Tχ

w(D + γη)
log
(ω

Λ

)
Breakdown of hydrodynamics! [Schepper,Beyeren ’74]
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I will show:

Chiral diffusion breaks down in the IR

It persists even without momentum conservation!

It furnishes a novel way to flow to a non-trivial IR fixed point.

7 / 16



EFT of chiral diffusion
Consider a quantum system in a thermal state ρ0 = e−βH/Tr(e−βH)
with

∂µJ
µ = cεµνFµν

Background sources: A1µ,A2µ

e iW [A1,A2] = Tr
[
U(A1)ρ0U

†(A2)
]

=

∫
ρ0

Dψ1Dψ2e
iS[ψ1,A1]−iS[ψ2,A2]

Anomalous conservation of Jµ1 and Jµ2 implies the Ward identity

W [A1µ + ∂µλ1,A2µ + ∂µλ2] = W [A1µ,A2µ] + 2c

∫
λ1F1− 2c

∫
λ2F2

8 / 16



EFT of chiral diffusion

W [A1µ + ∂µλ1,A2µ + ∂µλ2] = W [A1µ,A2µ] + c

∫
λ1F1µν − c

∫
λ2F2µν

W is non-local due to long-living modes associated to ∂µJ
µ
1 = 0 and

∂µJ
µ
2 = 0.

“Unintegrate” long-living modes [Haehl,Loganayagam,Rangamani ’15;
Crossley, PG, Liu ’15; Jensen, Pinzani-Fokeeva, Yarom ’17;. . . ]

e iW [A1,A2] =

∫
Dϕ1Dϕ2 e

iShydro[A1,ϕ1;A2,ϕ2]

ϕ1, ϕ2 : long living modes

Shydro local, satisfies several symmetries. Precisely recovers diffusion
in the saddle-point limit.
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IR instability

Minimal action for chiral diffusion:

S =

∫
d2x

(
−
(
χ∂tµ− 4c∂xµ− σ∂2

xµ+
1

2
χ′∂t(µ

2)

)
ϕa + iTσ(∂xϕa)2

)
where µ = ∂tϕr is the chemical potential, and

ϕr =
1

2
(ϕ1 + ϕ2) classical variable

ϕa = ϕ1 − ϕ2, noise variable

At tree-level, this action recovers:

∂µJ
µ = χ∂tµ− 4c∂xµ− σ∂2

xµ+
1

2
χ′∂t(µ

2) = 0
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IR instability

It is convenient to change coordinates to a frame co-moving with the
chiral front: x → x + 4c

χ t. Upon rescaling various quantities:

S =

∫
d2x

(
−
(
∂tµ− ∂2

xµ+ λ∂x(µ2)
)
ϕa + i(∂xϕa)2

)
, λ =

2cχ′T

χσ

Scaling ∂t ∼ ∂2
x , the interaction λ is relevant! This has dramatic

consequences:

〈J i (ω)J i (−ω)〉ret ∼ σiω + λ2(iω)−
1
2 + λ4(iω)−1 + · · ·

Correlation function grows with time!
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Fate in the IR

What is the fate of chiral diffusion in the IR?
To get a sense, consider higher-dimensional generalization:

Jx = −4cµ− σ∂xµ, J⊥ = −σ⊥∇⊥µ

Rescaled coupling λ is marginal in 2 + 1 and irrelevant in 3 + 1.

(2 + 1)− d : surface chiral metals

(3 + 1)− d : chiral magnetic effect with large background magnetic
field.

J i ∝ µB i
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Fate in the IR

Integrate out momentum shell e−lΛ < |k | < Λ:

∂λ

∂l
=

1

2
ελ− λ3

2π
, ε = 2− d

The theory is marginally irrelevant in d = 2 and has a non-trivial fixed
point at ε = 2− d > 0!
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Fate in the IR

In 1 + 1 dimensions, the theory flows to the KPZ (Kardar-Parisi-Zhang)
universality class.

Diffusive fluctuations around the chiral front at x + 4c
χ t are in the

KPZ universality class.

Chiral diffusion flows to ω = 4c
χ k + kz , z = 3

2 , leading to the exact
scaling

σ(ω) = 〈J i (ω)J i (−ω)〉sym ∼
1

ω1/3
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Remarks
Chiral diffusion has a non-trivial IR fixed point

Precisely due to chiral anomaly

Persists without momentum conservation

Future directions
1 Heat transport

2 More general non-equilibrium situations?
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Advertisement:
Application of Schwinger-Keldysh effective field theories to far from
equilibrium systems:

Topological response of periodically driven (Floquet) systems

[Nathan et al., ’16]

Inherently far from equilibrium.

Topological field theory, e.g. for “chiral Floquet drive”:

e iW [A1,A2] = e i
Θ(α)

2π
κ
∫
d2x[dA1(x)−dA2(x)]

[PG,Gromov,Ryu 1908.03217]
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