Effective field theories for

Fluid Dynamics from Black Holes and Enstrophy

Natalia Pinzani Fokeeva - KU Leuven Leiden - October 2019

with J. de Boer and M. P. Heller: 1812.06093 + w.i.p. also with Ricardo Espindola with K. Jensen, R. Marjieh, and A. Yarom 1804.04654 + w.i.p. with R. Marjieh, and A. Yarom

Effective field theories for

Fluid Dynamics

Natalia Pinzani Fokeeva - KU Leuven Leiden - October 2019

Equations of motion

$$\nabla_{\mu}T^{\mu\nu} = 0 \qquad \nabla_{\mu}J^{\mu} = 0$$

$$\nabla_{\mu}J^{\mu} = 0$$

Constitutive relations

$$T^{\mu\nu} = T^{\mu\nu}(u^{\mu}, T, \partial)$$

= $P(T)g_{\mu\nu} + (P'(T)T)u_{\mu}u_{\nu} + \eta\partial_{\mu}u_{\nu} + \dots$

2nd Law of Thermodynamics

$$\nabla_{\mu}S^{\mu} \geq 0$$

- Onsager relations
- Statistical fluctuations
- ??

Equations of motion

$$\nabla_{\mu}T^{\mu\nu} = 0 \qquad \nabla_{\mu}J^{\mu} = 0$$

$$\nabla_{\mu}J^{\mu} = 0$$

Constitutive relations

$$T^{\mu\nu} = T^{\mu\nu}(u^{\mu}, T, \partial)$$

= $P(T)g_{\mu\nu} + (P'(T)T)u_{\mu}u_{\nu} + \eta \partial_{\mu}u_{\nu} + \dots$

2nd Law of Thermodynamics

$$\nabla_{\mu}S^{\mu} \geq 0$$

How viscous?

- Onsager relations
- Statistical fluctuations

Equations of motion

$$\nabla_{\mu}T^{\mu\nu} = 0 \qquad \nabla_{\mu}J^{\mu} = 0$$

$$\nabla_{\mu}J^{\mu} = 0$$

Constitutive relations

$$T^{\mu\nu} = T^{\mu\nu}(u^{\mu}, T, \partial)$$

= $P(T)g_{\mu\nu} + (P'(T)T)u_{\mu}u_{\nu} + \eta\partial_{\mu}u_{\nu} + \dots$

2nd Law of Thermodynamics

$$\nabla_{\mu}S^{\mu} \ge 0$$

Onsager relations

 $\rightarrow \eta > 0$ + Some transport coefficients are vanishing at second order

Statistical fluctuations

??

Equations of motion

$$\nabla_{\mu}T^{\mu\nu} = 0 \qquad \nabla_{\mu}J^{\mu} = 0$$

$$\nabla_{\mu}J^{\mu} = 0$$

Constitutive relations

$$T^{\mu\nu} = T^{\mu\nu}(u^{\mu}, T, \partial)$$

= $P(T)g_{\mu\nu} + (P'(T)T)u_{\mu}u_{\nu} + \eta\partial_{\mu}u_{\nu} + \dots$

2nd Law of Thermodynamics

$$\nabla_{\mu}S^{\mu} \geq 0$$

Onsager relations

E.g. Brownian motion

Statistical fluctuations

??

Is this set of constraints sufficient?

Is this set of constraints sufficient?

No.

Using Schwinger-Keldysh effective field theory techniques we are able to determine that additional constraints exist

Schwinger-Keldysh EFTs

The Schwinger-Keldysh path integral

UV:
$$Z[A_1, A_2] = \int \mathcal{D}\phi_1 \mathcal{D}\phi_2 e^{iS[\phi_1, A_1] - iS[\phi_2, A_2]}$$
$$= Tr(\mathcal{U}[A_1]\rho(-\infty)\mathcal{U}^{\dagger}[A_2])$$

IR:
$$Z[A_1, A_2] = \int \mathcal{D}\xi_1 \mathcal{D}\xi_2 e^{iS_{eff}[\xi_1, \xi_2; A_1, A_2; \rho]}$$

Schwinger-Keldysh EFTs

• The Schwinger-Keldysh path integral

UV:
$$Z[A_1,A_2] = \int \mathcal{D}\phi_1 \mathcal{D}\phi_2 e^{iS[\phi_1,A_1]-iS[\phi_2,A_2]}$$

$$= Tr(\mathcal{U}[A_1]\rho(-\infty)\mathcal{U}^{\dagger}[A_2])$$

IR:
$$Z[A_1, A_2] = \int \mathcal{D}\xi_1 \mathcal{D}\xi_2 e^{iS_{eff}[\xi_1, \xi_2; A_1, A_2; \rho]}$$

- 1. Symmetries
- 2. Degrees of freedom

The symmetries

The symmetries can be inferred from the microscopic definition

$$Z[A_1,A_2]=Tr(\mathcal{U}[A_1]\rho(-\infty)\mathcal{U}^{\dagger}[A_2])$$
 2) SK symmetry:
$$Z[A_1=A_2=A_r]=1$$

3) Reality condition: $Z[A_1, A_2]^* = Z[A_2, A_1]$

- **4) KMS symmetry:** (for thermal states $\rho = e^{-\beta H} + \text{CPT}$) $Z[A_1(t_1), A_2(t_2)] = Z[\eta_{A_1} A_1(-t_1), \eta_{A_2} A_2(-t_2 i\beta)]$
- 5) Constraint $|Z|^2 \le 1$

Schwinger-Keldysh positivity

The constraint

$$|Z|^2 \leq 1$$

$$\mathrm{Im}S_{eff} \ge 0$$

$$A. \quad Im S_{eff} = 0$$

$$\nabla_{\mu}S^{\mu}=0$$

Non dissipative

B.
$$Im S_{eff} \ge 0$$

$$\nabla_{\mu}S^{\mu} \geq 0$$

Dissipative

c.
$$\operatorname{Im} S_{eff} \geq 0$$

$$\nabla_{\mu}S^{\mu}=0$$

Pseudo-dissipative

D.
$$\operatorname{Im} S_{eff} \geq 0$$

$$\nabla_{\mu}S^{\mu}=0$$

Exceptional

• The constraint

$$|Z|^2 \le 1$$

 \rightarrow

$$\text{Im}S_{eff} \ge 0$$

 $A. \quad Im S_{eff} = 0$

$$\nabla_{\mu}S^{\mu}=0$$

Non dissipative

B. $\operatorname{Im} S_{eff} \geq 0$

$$\nabla_{\mu}S^{\mu} \geq 0$$

Dissipative

c. $\operatorname{Im} S_{eff} \geq 0$

$$\nabla_{\mu}S^{\mu}=0$$

Pseudo-dissipative

D. $\operatorname{Im} S_{eff} \geq 0$

$$\nabla_{\mu}S^{\mu}=0$$

Exceptional

• Example of exceptional transport

$$T_{ij} = P(T)P_{ij} + \epsilon(T)u_iu_j + (\gamma(T,\mu) - \gamma(T,-\mu)) \left(P_{ij}\sigma^2 - 2\Theta\sigma_{ij}\right)$$

Example of exceptional transport

$$T_{ij} = P(T)P_{ij} + \epsilon(T)u_iu_j + \left(\gamma(T,\mu) - \gamma(T,-\mu)\right)\left(P_{ij}\sigma^2 - 2\Theta\sigma_{ij}\right)$$
 Expansion
$$P_{ij} = g_{ij} + u_iu_j$$
 Shear
$$\Theta = \nabla_i u^i$$

$$\sigma_{kl} = P_k^i P_l^j (\nabla_i u_j + \nabla_j u_i) - \frac{2}{d} P_{ij}\Theta$$

Example of exceptional transport

$$T_{ij} = P(T)P_{ij} + \epsilon(T)u_iu_j + (\gamma(T,\mu) - \gamma(T,-\mu))\left(P_{ij}\sigma^2 - 2\Theta\sigma_{ij}\right)$$

$$P_{ij} = g_{ij} + u_iu_j$$
 Shear
$$\Theta = \nabla_i u^i$$

$$\sigma_{kl} = P_k^i P_l^j (\nabla_i u_j + \nabla_j u_i) - \frac{2}{d} P_{ij}\Theta$$

•
$$\operatorname{Im} S_{eff} \ge 0$$
 $\nabla_{\mu} S^{\mu} = 0$

$$\longrightarrow \int d^{d+1}\sigma \sqrt{-g}\gamma^{-} \left(P^{ij}P^{kl} + 2\Theta\left(\frac{1}{d}P^{ij}P^{kl} - P^{i(k}P^{l)j}\right) \right) g_{a\,ij}g_{a\,kl} \ge 0$$

$$\rightarrow \gamma^- = \gamma(T,\mu) - \gamma(T,-\mu) = 0$$

Is this set of constraints sufficient?

No.

Using Schwinger-Keldysh effective field theory techniques we are able to determine that additional constraints exist:

Schwinger-Keldysh positivity

Outlook

- A more systematic analysis?
- What would be the holographic counterpart?

Enstrophy

Natalia Pinzani Fokeeva - KU Leuven Leiden - October 2019

• 2+1 turbulence — inverse energy cascade (from small to large scales)

- 2+1 turbulence inverse energy cascade
- In non relativistic fluid flows, its origin can be traced back to the existence of an approximately conserved **enstrophy charge:**

$$\Omega = \int \omega^{ij} \omega_{ij} d^d x$$

$$\partial_t \Omega = \int \omega^{ij} \sigma_j^k \omega_{ki} \, d^d x - \frac{1}{R} P$$

- 2+1 turbulence inverse energy cascade
- In non relativistic fluid flows, its origin can be traced back to the existence of an approximately conserved **enstrophy charge:**

$$\Omega = \int \omega^{ij} \omega_{ij} d^dx$$
 vorticity: $\omega_{ij} = \partial_i v_j - \partial_j v_i$ shear: $\sigma_{ij} = \partial_i v_j + \partial_j v_i$
$$\partial_t \Omega = \int \omega^{ij} \sigma_j^k \omega_{ki} \, d^d x - \frac{1}{R} P$$

Vortex-stretching term

- 2+1 turbulence inverse energy cascade
- In non relativistic fluid flows, its origin can be traced back to the existence of an approximately conserved **enstrophy charge**

$$\Omega = \int \omega^{ij} \omega_{ij} d^d x$$

$$\partial_t \Omega = \int \omega^{ij} \sigma_j^k \omega_{ki} \, d^d x - \frac{1}{R} P$$

In d=2 spatial dimensions the Vortex-stretching term is vanishing

- 2+1 turbulence —> inverse energy cascade
- In non relativistic fluid flows, its origin can be traced back to the existence of an approximately conserved **enstrophy charge**

$$\Omega = \int \omega^{ij} \omega_{ij} d^d x$$

$$\partial_t \Omega = -\frac{1}{R} P$$

Palinstrophy: $P=\int\partial_k\omega^{ij}\,\partial^k\omega_{ij}\,d^dx$

- 2+1 turbulence inverse energy cascade
- In **non relativistic** fluid flows, its origin can be traced back to the existence of an approximately conserved **enstrophy charge**
- Relativistic generalization to uncharged, conformal fluid flows

[F. Carrasco, L. Lehner, Robert C. Myers, O. Reula, A. Singh 1210.6702]

- Numerical simulations in holography
- Astrophysics?
- Heavy-ion collisions?

2. Can it be derived from a symmetry principle?

Uncharged: yes

Charged: only for restricted equations of states

2. Can it be derived from a symmetry principle?

Yes, from an effective action for ideal fluid dynamics

Uncharged: yes

Charged: only for restricted equations of states

2. Can it be derived from a symmetry principle?

Yes, from an effective action for ideal fluid dynamics

Consider a closed 2-form

$$\Omega_{\mu\nu} = \nabla_{\mu}(Tu_{\nu}) - \nabla_{\nu}(Tu_{\mu})$$

On-shell it satisfies

$$\Omega_{\mu\nu}u^{\nu}=0$$

• The enstrophy current

$$J^{\mu} = \frac{1}{s} \Omega_{\alpha\beta} \Omega^{\alpha\beta} u^{\mu}$$

Conservation equation

$$\nabla_{\mu}J^{\mu} = -\frac{1}{s^2}\nabla_{\mu}(su^{\mu})\Omega^2 + \frac{2}{s}\Omega^{\alpha\beta}\nabla_{\mu}(u^{\mu}\Omega_{\alpha\beta})$$

The enstrophy current

$$J^{\mu} = \frac{1}{s} \, \Omega_{\alpha\beta} \Omega^{\alpha\beta} \, u^{\mu}$$

Conservation equation

$$\nabla_{\mu}J^{\mu} = -\frac{1}{s^2}\nabla_{\mu}(su^{\mu})\Omega^2 + \frac{2}{s}\Omega^{\alpha\beta}\nabla_{\mu}(u^{\mu}\Omega_{\alpha\beta})$$

• The enstrophy current

$$J^{\mu} = \frac{1}{s} \, \Omega_{\alpha\beta} \Omega^{\alpha\beta} \, u^{\mu}$$

Conservation equation

$$\nabla_{\mu}J^{\mu} = -\frac{1}{s^2}\nabla_{\mu}(su^{\mu})\Omega^2 + \frac{2}{s}\Omega^{\alpha\beta}\nabla_{\mu}(u^{\mu}\Omega_{\alpha\beta})$$

Vanishing on-shell

• The enstrophy current

$$J^{\mu} = \frac{1}{s} \, \Omega_{\alpha\beta} \Omega^{\alpha\beta} \, u^{\mu}$$

Conservation equation

$$\nabla_{\mu}J^{\mu} = -\frac{1}{s^2}\nabla_{\mu}(su^{\mu})\Omega^2 + \frac{2}{s}\Omega^{\alpha\beta}\nabla_{\mu}(u^{\mu}\Omega_{\alpha\beta})$$

Vanishing on-shell

• It is straightforward to show

$$\Omega^{\alpha\beta}\nabla_{\mu}(u^{\mu}\Omega_{\alpha\beta}) = \frac{1}{2}\Omega^{\alpha\beta}\left(\sigma^{\mu}_{\alpha}\Omega_{\mu\beta} + \sigma^{\mu}_{\beta}\Omega_{\alpha\mu}\right) + \left(1 - \frac{2}{d}\right)\Theta\Omega^{2}$$

Relativistic generalization of the vortex-stretching term

The enstrophy current

$$J^{\mu} = \frac{1}{s} \, \Omega_{\alpha\beta} \Omega^{\alpha\beta} \, u^{\mu}$$

Conservation equation

$$\nabla_{\mu}J^{\mu} = -\frac{1}{s^2}\nabla_{\mu}(su^{\mu})\Omega^2 + \frac{2}{s}\Omega^{\alpha\beta}\nabla_{\mu}(u^{\mu}\Omega_{\alpha\beta})$$

Vanishing on-shell

• It is straightforward to show

$$\Omega^{\alpha\beta}\nabla_{\mu}(u^{\mu}\Omega_{\alpha\beta}) = \frac{1}{2}\Omega^{\alpha\beta}\left(\sigma^{\mu}_{\alpha}\Omega_{\mu\beta} + \sigma^{\mu}_{\beta}\Omega_{\alpha\mu}\right) + \left(1 - \frac{2}{d}\right)\Theta\Omega^{2}$$

In 2 spatial dimensions these terms are vanishing on-shell

Mini summary

• The enstrophy current

$$J^{\mu} = \frac{1}{s} \, \Omega_{\alpha\beta} \Omega^{\alpha\beta} \, u^{\mu}$$

$$\Omega_{\mu\nu} = \nabla_{\mu}(Tu_{\nu}) - \nabla_{\nu}(Tu_{\mu})$$

$$\Omega_{\mu\nu}u^{\nu} = 0 \quad \text{on-shell}$$

Conserved on-shell in 2 spatial dimensions

$$\nabla_{\mu}J^{\mu} = \mathcal{O}(\partial^3)$$

Uncharged: yes

Charged: only for restricted equations of states

2. Can it be derived from a symmetry principle?

yes, from an effective action for ideal fluid dynamics

• The enstrophy current

$$J^{\mu} = \frac{1}{s} \Omega_{\alpha\beta} \Omega^{\alpha\beta} u^{\mu}$$

Another 2-form

$$\Omega_{\alpha\beta} = \nabla_{\alpha}(Tf(T, \mu/T)u_{\beta}) - \nabla_{\beta}(Tf(T, \mu/T)u_{\alpha}) + c F_{\alpha\beta}$$

It satisfies on-shell

$$\Omega_{\alpha\beta}u^{\beta} = \left(f\frac{\rho T}{P+\epsilon} - \frac{\partial f}{\partial(\mu/T)}\right)TD_{\alpha}^{\perp}(\mu/T) - T\frac{\partial f}{\partial T}D_{\alpha}^{\perp}T - \left(f\frac{\rho T}{P+\epsilon} - c\right)F_{\alpha\beta}u^{\beta}$$

$$D_{\alpha}^{\perp} = (\delta_{\alpha}^{\mu} + u^{\mu}u_{\alpha})\partial_{\mu}$$

The enstrophy current

$$J^{\mu} = \frac{1}{s} \, \Omega_{\alpha\beta} \Omega^{\alpha\beta} \, u^{\mu}$$

It satisfies on-shell

$$\Omega_{\alpha\beta}u^{\beta} = \left(f\frac{\rho T}{P+\epsilon} - \frac{\partial f}{\partial(\mu/T)}\right)TD_{\alpha}^{\perp}(\mu/T) - T\frac{\partial f}{\partial T}D_{\alpha}^{\perp}T - \left(f\frac{\rho T}{P+\epsilon} - c\right)F_{\alpha\beta}u^{\beta}$$

The enstrophy current

$$J^{\mu} = \frac{1}{s} \, \Omega_{\alpha\beta} \Omega^{\alpha\beta} \, u^{\mu}$$

It satisfies on-shell

$$\Omega_{\alpha\beta}u^{\beta} = \left(f\frac{\rho T}{P+\epsilon} - \frac{\partial f}{\partial(\mu/T)}\right)TD_{\alpha}^{\perp}(\mu/T) - T\frac{\partial f}{\partial T}D_{\alpha}^{\perp}T - \left(f\frac{\rho T}{P+\epsilon} - c\right)F_{\alpha\beta}u^{\beta}$$

$$\frac{\partial f}{\partial T} = 0$$

The enstrophy current

$$J^{\mu} = \frac{1}{s} \, \Omega_{\alpha\beta} \Omega^{\alpha\beta} \, u^{\mu}$$

It satisfies on-shell

$$\Omega_{\alpha\beta}u^{\beta} = \left(f\frac{\rho T}{P+\epsilon} - \frac{\partial f}{\partial(\mu/T)}\right)TD_{\alpha}^{\perp}(\mu/T) - T\frac{\partial f}{\partial T}D_{\alpha}^{\perp}T - \left(f\frac{\rho T}{P+\epsilon} - c\right)F_{\alpha\beta}u^{\beta}$$

$$\frac{\partial f}{\partial T} = 0$$

In the absence of external sources: $P(T,\mu)=p(Tf(\mu/T))$

• The enstrophy current

$$J^{\mu} = \frac{1}{s} \Omega_{\alpha\beta} \Omega^{\alpha\beta} u^{\mu}$$

It satisfies on-shell (which is in general non-vanishing!)

$$\Omega_{\alpha\beta}u^{\beta} = \left(f\frac{\rho T}{P+\epsilon} - \frac{\partial f}{\partial(\mu/T)}\right)TD_{\alpha}^{\perp}(\mu/T) - T\frac{\partial f}{\partial T}D_{\alpha}^{\perp}T - \left(f\frac{\rho T}{P+\epsilon} - c\right)F_{\alpha\beta}u^{\beta}$$

$$\frac{\partial f}{\partial T} = 0$$

In the absence of external sources: $P(T,\mu)=p(Tf(\mu/T))$

Otherwise: $f = c_0 + c \mu/T$

Mini summary

• The enstrophy current for charged fluids

$$J^{\mu} = \frac{1}{s} \, \Omega_{\alpha\beta} \Omega^{\alpha\beta} \, u^{\mu}$$

$$\Omega_{\alpha\beta} = \nabla_{\alpha} (Tf(\mu/T)u_{\beta}) - \nabla_{\beta} (Tf(\mu/T)u_{\alpha}) + cF_{\alpha\beta}$$

In the absence of external sources: $P(T,\mu)=p(Tf(\mu/T))$

Otherwise:
$$f = c_0 + c \mu/T$$

• Conservation equation in 2 spatial dimensions

$$\nabla_{\mu}J^{\mu} = \mathcal{O}(\partial^4)$$

Mini summary

• The enstrophy current for charged fluids

$$J^{\mu} = \frac{1}{s} \, \Omega_{\alpha\beta} \Omega^{\alpha\beta} \, u^{\mu}$$

$$\Omega_{\alpha\beta} = \nabla_{\alpha} (Tf(\mu/T)u_{\beta}) - \nabla_{\beta} (Tf(\mu/T)u_{\alpha}) + cF_{\alpha\beta}$$

In the absence of external sources: $P(T,\mu)=p(Tf(\mu/T))$

Otherwise:
$$f = c_0 + c \mu/T$$

Conservation equation in 2 spatial dimensions

$$\nabla_{\mu}J^{\mu} = \mathcal{O}(\partial^4)$$

ullet A family of conserved currents $J_n^\mu = rac{1}{(as+b
ho)^{2n-1}}\,\Omega^n\,u^\mu$

1. An enstrophy current for charged, relativistic fluid flows?

Uncharged: yes

Charged: only for restricted equations of states

2. Can it be derived from a symmetry principle?

yes, from an effective action for ideal fluid dynamics

The leading order effective action for fluid dynamics

$$S_{eff} = \int \sqrt{-g} P(T, \mu) d^{d+1} \sigma$$

The invariants

$$T = \frac{1}{\sqrt{-\beta^i \beta^j g_{ij}}} \qquad \mu/T = \beta^i B_i + \Lambda_\beta$$

The pullback sources

$$g_{ij}(\sigma) = \partial_i X^{\mu} \partial_j X^{\nu} g_{\mu\nu}(X(\sigma))$$
$$B_i(\sigma) = \partial_i X^{\mu} B_{\mu}(X(\sigma)) + \partial_i C(\sigma)$$

• The leading order effective action for fluid dynamics

$$S_{eff} = \int \sqrt{-g} P(T, \mu) d^{d+1} \sigma$$

The invariants

$$T = \frac{1}{\sqrt{-\beta^i \beta^j g_{ij}}} \qquad \mu/T = \beta^i B_i + \Lambda_\beta$$

The pullback sources

$$g_{ij}(\sigma) = \partial_i X^{\mu} \partial_j X^{\nu} g_{\mu\nu}(X(\sigma))$$

$$B_i(\sigma) = \partial_i X^{\mu} B_{\mu}(X(\sigma)) + \partial_i C(\sigma)$$

The leading order effective action for fluid dynamics

$$S_{eff} = \int \sqrt{-g} \, P(T,\mu) \, d^{d+1} \sigma$$
 Initial state data

The invariants

$$T = \frac{1}{\sqrt{-\beta^i \beta^j g_{ij}}} \qquad \mu/T = \beta^i B_i + \Lambda_\beta$$

The pullback sources

External sources

$$g_{ij}(\sigma) = \partial_i X^{\mu} \partial_j X^{\nu} g_{\mu\nu}(X(\sigma))$$

$$B_i(\sigma) = \partial_i X^{\mu} B_{\mu}(X(\sigma)) + \partial_i C(\sigma)$$

The leading order effective action for fluid dynamics

$$S_{eff} = \int \sqrt{-g} \, P(T,\mu) \, d^{d+1} \sigma$$
 Initial state data

The invariants

$$T = \frac{1}{\sqrt{-\beta^i \beta^j g_{ij}}} \qquad \mu/T = \beta^i B_i + \Lambda_\beta$$

• The pullback sources

External sources

Dynamical fields

$$g_{ij}(\sigma)=\partial_i X^\mu \partial_j X^
u g_{\mu
u}(X(\sigma))$$
 $B_i(\sigma)=\partial_i X^\mu B_\mu (X(\sigma))+\partial_i C(\sigma)$

Enstrophy from symmetry

• The leading order effective action for fluid dynamics

$$S_{eff} = \int \sqrt{-g} P(T, \mu) d^{d+1} \sigma$$

The transformation of the dynamical fields

$$\delta X^{\mu} = \frac{\Omega^2}{Ts^2} u^{\mu} - \frac{2}{sp'} P^{\mu\alpha} \left(2\nabla_{\nu}\Omega^{\nu}{}_{\alpha} + \frac{\Theta E_{\alpha}}{p'} + 2\Omega_{\nu\alpha}a^{\nu} + \frac{2}{s} \left(\frac{\partial s}{\partial T} \nabla_{\nu}T + \frac{\partial s}{\partial \mu} \nabla_{\nu}\mu \right) \Omega_{\alpha}{}^{\nu} \right)$$

$$\delta C = -\frac{\mu\Omega^2}{s^2T},$$

Leads to the conserved Noether current

$$\tilde{J}^{\mu} = J^{\mu} - \frac{4}{sp'} \Omega^{\mu\nu} E_{\nu}$$

Equations of motion

1. An enstrophy current for charged, relativistic fluid flows?

Uncharged: yes

Charged: only for restricted equations of states

2. Can it be derived from a symmetry principle?

yes, from an effective action for ideal fluid dynamics

Outlook:

- $\nabla_{\mu}J^{\mu} \leq 0$?
- Does that imply inverse energy cascade for relativistic fluids?
- The symmetry responsible for enstrophy conservation in AdS4 can be related to a near horizon supertranslation [w.i.p.]
- What is the corresponding geometric quantity that grows/decreases?

[see perhaps A. Adams, P. M. Chesler, and H. Liu 1307.7267]

Thank you!

Natalia Pinzani Fokeeva - KU Leuven Leiden - October 2019

with K. Jensen, R. Marjieh, and A. Yarom 1804.04654 + w.i.p. with R. Marjieh, and A. Yarom