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The conventional formalism

e Equations of motion VTH = () VdE =10
e Constitutive relations 1*" =TH(u#,T,d)
= P(T)guw + (P(T)T)uyuy, + n0,uy + . ..

e 2nd Law of Thermodynamics V5% >0

e Onsager relations

e Statistical fluctuations
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e Equations of motion VTH = () VdE =10
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Is this set of constraints sufficient?



Is this set of constraints sufficient?

No.

Using Schwinger-Keldysh effective field theory techniques we are able
to determine that additional constraints exist



Schwinger-Keldysh EFTs

e The Schwinger-Keldysh path integral

UV: Z[Al,AQ] = fD¢1D¢26i5[q§1,Al]—iS[¢2,A2]
l = Tr(U[A1]p(—o0)UT[A2])

IR: Z[AI,AQ] — f'Dﬁlpfzeise”[61’52;’41"42;’0]




Schwinger-Keldysh EFTs

e The Schwinger-Keldysh path integral

UV: Z[Al,AQ] = fD¢1D¢2@is[¢l,Al]—i5[¢2,A2]
l = Tr(U[A1]p(—o0)UT[A2])

IR: Z[AI’AQ] — f’Dé‘lpfzeiseff[51752;A1,A2;P]

1. Symmetries
2. Degrees of freedom




he symmetries

The symmetries can be inferred from the microscopic definition

Z[A1, Ag] = Tr(U[A1]p(—oo)UT[As])

‘ 5> 2) SK symmetry: Z[A1=A=A,]=1

3) Reality condition:  Z[A;1, As]* = Z[Ay, Aq]

4) KMS symmetry: ( for thermal states p = e P2 4 cpT )
Z|A1(t1), A2(t2)] = Z|na, A1(—t1),na, As(—t2 — i3)]

5) Constraint | Z]% <1
[M. Crossley, P. Glorioso, H. Liu (1511.03646)]
e —



Schwinger-Keldysh positivity

e The constraint |Z|2 <1 —> ImScrr >0

A ImSerr =0 V5" =0 Non dissipative
B. ImSeff >0 V“S“ >0 Dissipative
Cc. ImScrr>0 VMS“ =0 Pseudo-dissipative

D. ImScsr >0 V“S“ =0 Exceptional




Example

e The constraint |Z|2 <1 —> ImScrr >0

A ImSerr =0 V5" =0 Non dissipative
B. ImSeff >0 VNS“ >0 Dissipative
Cc. ImScrr>0 VMS“ =0 Pseudo-dissipative

[D. ImSerr >0 V“S“ =0 Exceptional ]




Example

e Example of exceptional transport

Tij = P(T)Py + e(T)wiu; + (YT, p) — (T, —p)) (Pjo* — 200;)




Example

e Example of exceptional transport

T:ij — P(T)PU + E(T)uiuj + (7(T7 :u) - 7(T7 _:u)) (Pij0-2 _;@U’ij)

Fij = gij + uiu; / .

Projector - Shear 5 ©=Vu'
on = BB (Viuj + Vjui) — = PO

Expansion




Example

e Example of exceptional transport

T:ij — P(T)PLJ + G(T)uiuj + (7(T7 /*L) _ 7(T7 _:u)) (PijO-Q _;@J’ij)

Pz,j = gij + U, / Expansion |

Projector o Shear 9 0=V
on = BB (Viuj + Vjui) — = PO

e ImScsr >0 VMS'M =0

g 1 .. . .
— / Ao/ =gy~ (P”P’“l + 20 (EP”P’“‘ — PZ(’“PW)) Jaijgari > 0

—> 7 = 7(T7 :u) - 7(T7 _:u) =0




Is this set of constraints sufficient?

No.

Using Schwinger-Keldysh effective field theory techniques we are able
to determine that additional constraints exist:
Schwinger-Keldysh positivity



Outlook

e A more systematic analysis?

e What would be the holographic counterpart?
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Motivation

e 3+1turbulence direct energy cascade
(from big to small scales)




Motivation

e 2+1turbulence inverse energy cascade
(from small to large scales)

t=0 Formation Fully developed Final state
of sheets turbulence
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e In non relativistic fluid flows, its origin can be traced back to the existence of
an approximately conserved enstrophy charge:

. J
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Vortex-stretching term



Motivation

e 2+1turbulence inverse energy cascade

e In non relativistic fluid flows, its origin can be traced back to the existence of
an approximately conserved enstrophy charge

() = w”wijdda:

0, = [ w” afwki dix — EP

In d=2 spatial dimensions the Vortex-stretching term is vanishing



Motivation

e 2+1turbulence inverse energy cascade

e In non relativistic fluid flows, its origin can be traced back to the existence of
an approximately conserved enstrophy charge

Q= [ ww; d%z

e |[nd=2:

1
(%Q — _EP

Palinstrophy: P = /aszj 8kwij ddZE

Reynolds number [Kraichnan 1967, Leith 1968, Batchelor 1969]



Motivation

e 2+1turbulence inverse energy cascade

e In non relativistic fluid flows, its origin can be traced back to the existence of
an approximately conserved enstrophy charge

e Relativistic generalization to uncharged, conformal fluid flows
[F. Carrasco, L. Lehner, Robert C. Myers, O. Reula, A. Singh 1210.6702]
o Numerical simulations in holography
o Astrophysics?

o Heavy-ion collisions?
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Enstrophy current for uncharged fluids

e Consider a closed 2-form
Quy = Vou(Tuy) — Vo (Tuy,)
e On-shell it satisfies
1
Qu” =0
e The enstrophy current
p 1 ap , p
S

e Conservation equation

1 2
VILLJ'M — —QVM(S’LLM)QZ + g Qaﬁvu(uugaﬂ)



Enstrophy current for uncharged fluids

e The enstrophy current

[ Juzlﬂaﬂﬂaﬂuu ]

S

e Conservation equation

1 2
Vil = =5 V(w2 + 2 009, (0 )




Enstrophy current for uncharged fluids

e The enstrophy current
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e Conservation equation
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Enstrophy current for uncharged fluids

e The enstrophy current

1
JF = = Qa0 ut
S

e Conservation equation

1 2
VILLJ'M — —QVM(S’LL'UJ)QZ + g Qaﬁvu(uugaﬂ)

Vanishing on-shell

e |tis straightforward to show

1 2
Qaﬂvu(uuﬂaﬁ) — §Qaﬁ (Jgﬂuﬁ —+ UgQau) -+ (1 — E) @Q2

Relativistic generalization of the vortex-stretching term



Enstrophy current for uncharged fluids

e The enstrophy current

1
JF = = Qa0 ut
S

e Conservation equation

1 2 ,
VILLJ'M — —?VM(S’LLM)QZ + g Qaﬁvﬂ'\uugaﬂ)

Vanishing on-shell

e |tis straightforward to show

1 2
Qaﬂvu(uuﬂaﬁ) — 5@045 (Ugﬂuﬁ —+ JgQO‘NJ) -+ (1 — d) @Q2

In 2 spatial dimensions these terms are vanishing on-shell



Mini summary

e The enstrophy current

[ Juzlﬂaﬁgaﬂuu ]

S

=V, (Tu,) — Vy(Tuy,)

QM,/U,V =0 on-shell

e Conserved on-shell in 2 spatial dimensions

V. J" = 0(0°)




1. An enstrophy current for
charged, relativistic fluid flows?

Uncharaed: yes
Charged: only for restricted equations of states

2. Can it be derived from a
symmetry principle?

yes, from an effective action for ideal fluid dynamics



Enstrophy current for charged fluids

e The enstrophy current

[ Juzlﬂaﬂﬂaﬁuu ]

S

e Another 2-form
Qa,@ — Va(Tf(T7 /.L/T)’Uﬁ) o V,B(Tf(Ta M/T)U’Oé) + CFOé,B
e [t satisfies on-shell

pT of af

_ pL
Qaﬁuﬂ — (fP+€ _ 8(u/T)> TDi_(M/T)_Ta_TDi—T_ (fP—I—G _C) Faﬂuﬂ

D+ = (08 + u'uqy)0,

(67



Enstrophy current for charged fluids

e The enstrophy current

[ Juzlﬂaﬂﬂaﬂuu ]

S

e [t satisfies on-shell

ol of 0

Ou’ = (10 = s ) IO/ D) -TGE DT (§ 10— ) Fuse’

P+e¢ 0(u/T) oT P+e




Enstrophy current for charged fluids

e The enstrophy current

[ Juzlﬂaﬂﬂaﬂuu ]

S

e [t satisfies on-shell

ol of 0

Oue” = (140 = s ) IO/ D) -TGE DT (§ 20— ) Fuse’

or ¥

o1 =V

P+e¢ 0(u/T) P+e




Enstrophy current for charged fluids

e The enstrophy current

[ Juzlﬂaﬂﬂaﬂuu ]

S

e [t satisfies on-shell

B pI Of . 0f B pT . y
O’ = (1 20 = b ) T/ T)-T5E DT~ (£ 2~ ) s
o {\J

or ~ !

In the absence of external sources: P(T, ,LL) = p(Tf(,LL/T))




Enstrophy current for charged fluids

e The enstrophy current

1
JF = = Qa0 ut
S

e [t satisfies on-shell (which is in general non-vanishing!)

uﬁ_ IOT B af > L . a_f L _( pT —C) uﬁ
Qaﬂ - <fP—|—€ (9(,u/T) TDO{(ILL/T) TaTDaT fP—|—E Faﬂ
af '
a—T—O

In the absence of external sources: P(T, u) = p(T f(u/T))

Otherwise:  f = ¢y + C,LL/T



Mini summary

e The enstrophy current for charged fluids

[ Juzlﬂaﬂﬂaﬂuu ]

S

Qo = VoI f(/T)ug) — V(T f(1/T)ua) + cFog
In the absence of external sources: P(T, ) = p(T f(u/T))

Otherwise:  f = ¢q + CN/T

e Conservation equation in 2 spatial dimensions

V. J" = 0(0%




Mini summary

e The enstrophy current for charged fluids

1
JF = = Qa0 ut
S

Qapg = Vo (T f(u/T)ug) — V(T f(p/T)ua) + cFag
In the absence of external sources: P(T', ) = p(T f(u/T))

Otherwise:  f = ¢ + C,LL/T

e Conservation equation in 2 spatial dimensions

V. J" = 0(0%

e A family of conserved currents K — oK
y yia (a5 1 bp)2n—] Q" u



1. An enstrophy current for
charged, relativistic fluid flows?

Uncharged: yes
Charged: only for restricted equations of states

2. Can it be derived from a
symmetry principle?

yes, from an effective action for ideal fluid dynamizs



The ideal fluid effective action

e The leading order effective action for fluid dynamics
d+1
Seff = /\/—QP(T, p)d= o

e The invariants

1
T = —
\/—525]9@'

e The pullback sources

M/T — BiBz' + Aﬂ

gij(0) = 0;: X" 0; X" g, (X (o))
Bi(o) = 0; X"B,(X(0)) + 0;C(0)



The ideal fluid effective action

e The leading order effective action for fluid dynamics
d+1
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1
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M/T — 5iBz' + Aﬂ
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The ideal fluid effective action

e The leading order effective action for fluid dynamics

Sef f :/\/—QP(T> p)d o

Initial state data
e The invariants

1
T = —
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e The pullback sources

u/T = B'Bi + Ag
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The ideal fluid effective action

e The leading order effective action for fluid dynamics

Sef f :/\/—QP(T> p)d o

Initial state data
e The invariants

1
T = —
\/—525]9@'

e The pullback sources

u/T = B'Bi + Ag

External sources

9ij(0) = 0;.X"0; X" g (X (0))
Bi(o) = 0, X"B,(X (o)) + 0;:C(0)

Dynamical fields



Enstrophy from symmetry

e The leading order effective action for fluid dynamics
d+1
Seff = /\/—QP(T, p)d= o

e The transformation of the dynamical fields

02 2 OF 2 ( Os 0s
T2 (V Ty Tl +s<8T " o “) )
Q2
i =
s2T "’

® Leads to the conserved Noether current

~ 4
Jt=JH-=-—O"E,
sp/

Equations of motion



1. An enstrophy current for
charged, relativistic fluid flows?

Uncharged: yes
Charged: only for restricted equations of states

2. Can it be derived from a
symmetry principle?

yes, from an effective action for ideal fluid dynamics



Outlook:

e V,JH<0 ?
e Does that imply inverse energy cascade for relativistic fluids?

e The symmetry responsible for enstrophy conservation in AdS4 can
be related to a near horizon supertranslation [w.i.p.]

e What is the corresponding geometric quantity that
grows/decreases?



Thank you!
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