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Cuprates

Layers of CuO; planes
bounded by rare earths

Superconductivity and the
most part of exotic
properties happen on the
CuO; plane — 2D materials

Universal properties despite 8 i
many different compounds 2 =
Among High-T, ° 0
superconductors Bi-2201

has a relatively low critical .

temperature even at -'I»
optimal doping = ideal to

test low T properties of the

normal phase



Cuprates phase diagram

strange metal

temperature

Fermi liquid

antiferromagnet

hole doping

e Cuprates have almost the same Temperature vs doping
(concentration of rare earth) phase diagram, characterized by
many intertwined phases appearing at the same time.



Phase diagram, QCP and scaling laws
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e QCP is supposed to affect the properties of the strange metal
phase:
» transport coefficients should assume simple scaling laws
» Strong coupling: no well defined quasi-particles.



The Resistivity and Hall angle issue

e In normal Fermi liquid (magnetic field perpendicular to CuO;

planes)

pXXNTz7 cot&,.,:pﬂrvT2

Pxy

e In most of the cuprates

poc~ T, cotby =% T2

Pxy

e Actually in Bi-2201 is known that cot§y ~ T13



Other transport coefficients are less known

e Some of them are just dominated by lattice vibration
» k. has an 80 % of lattice phonon contribution

e Transverse transport coefficients are independent of phonons
contribution (typically very small signal)

» The Nernst coefficient N ([Wang, 2006] for a review)

» The thermal Hall conductivity ky, (measured in LSCO
[Grissonnanche, 2019] and in YBCO [Zhang, 2000][Matusiak,
2009])

» Magnetoresistance typically B? suppressed



More orderings discovered recently

e Charge-density wave (CDW) order appears to be a ubiquitous
feature of cuprate superconductors.
e Our material, Bi»SroCuOg:
» 2D CDW confirmed (by X-ray diffraction) to extend to optimal

and over-doped region [Peng 2018],
» low critical temperature (T, ~ 10 — 33 K).



Charge density wave order
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e What are charge density waves?
» Peierls (1955) suggested periodic distortion of 1D lattice can
lower total energy.
» Start with first Brillouin zone k = £ /a half filled.
» CDW distortion — new superlattice of spacing 2a. New first
Brillouin zone band gap at k = +7/2a.
» Gain in creating energy gaps can overcome loss of lattice
distortion.

e Incommensurate CDW — broken translation invariance.



CDW and pinning

As soon as the translation SB is pseudo-spontaneous (Goldstone
Bosons have a small mass) the AC conductivity can have an
off-axes peak [Fukuyama-Lee-Rice '78,Delacretaz 2017]
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Figure: Experimental BiSCO conductivity from [Tsvetkov 1997]
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e for wi > Q3/(I 4 2Q) there is an off-axes peak
e can the Drude to off axes peak originate from the same
mechanism?



CDW not only affects the conductivity

e Usually the enhancement in the Nernst effect at low T was

attributed to fluctuating superconductivity
e [Cyr-Choiniere 2009] found a relation between Tcpys and the

enhancement temperature
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e T, is the temperature at which one recovers a Fermi Liquid

expectation (T, ~ 2Tcpw)
e CDW affects the Nernst signal also at fluctuating level



Where do we stand?

Can one mechanism takes into account consistently all the
thermo-electric transport coefficients?

Many intertwined phases = difficult to uncover
We need a metallic behavior

Strange metals are strongly coupled by nature

Hydrodynamics might come to help



Hydrodynamics as an EFT

e At large length and time scales, only a small number of DOFs
survive to become hydrodynamic modes

» If no spontaneously broken symmetries: (almost)-conserved
currents.

e EOMS are determined by symmetries. Eg in a the relativistic
charged fluid there are two conserved currents:

0,0 =0,  9,T"™ =0

e Local thermal equilibrium: everything is function of p(x),
T(x) and u*(x) = gradients expansion:

JH = nu* + O(0), T = (n+ p)u*u” — pg"” + O(09)

Eventually one solves the EOMs order by order to find the relevant
observables



Hydrodynamics VS Fermi Liquid

e Fermi liquid has well defined quasi-particles around the Fermi
Surface, which interact weakly

e To see hydrodynamics effect the interaction time must be the
smallest scale in the system

Hydrodynamics is the correct EFT to describe strange metals:
strongly coupled materials where the relevant long lived DOF are
the (almost)-conserved currents



A unified hydrodynamic picture?
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Let us play simple and start with DC transport coefficients



Experiment (Please be kind here!)

e We want to measure the temperature T and magnetic field B
dependence of all the thermo-electric transport coefficients

e We will restrict to transverse or electric transport coefficients
to avoid phonons contribution (no Kxyx)

» The electric conductivity p.

» The Hall angle cotfy = Zﬂ

P (B)—pxx(0)

> .
The magnetoresistence er(0)

» The thermal Hall conductivity xy,

» The Nernst signal N

e Many coexisting phases = we need to properly define the
temperature range where the picture is supposed to be valid



B dependence of the DC transport coefficients
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e For T < 20 K the Nernst starts to deviate from linearity =
Vortex effect [Wang 2006]

e For T > 20 K the B dependence is the one expected for a
parity invariant system



T dependence of the DC transport coefficients
upper bound
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e Estimation of T,: the point where N/ T deviates from
linearity at high temperature : Tcpw ~ T,/2 =65 K
[Cyr-Choiniere 2009]

e In accordance with [Peng, 2018]



T dependence of the DC transport coefficients
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e Relevant temperature interval 20 K < T < 65 K



Summary of experimental results

e How do experimental parameters depend on 7 and B?
» o ~ BOT as expected for strange metals.

> Ap/p~ BT

P cotfy ~ B~1T!® as expected in Bi-2201 but different from
other materials (YBCO cotfy ~ B~1T2).

> ki ~ BT 3.

> N~ BT—2.5



Hydrodynamics with broken continuous symmetries
and dissipation

The breaking of translations can be pseudo-spontaneous

e Momentum dissipation rate I': coupling to external lattice

e phase relaxation £2; of the GBs: present as soon as
translations are explicitly broken [Amoretti 2018]

e The magnetic fields F*¥ = B enters only as an external field
via the Lorentz term

The total EOMs:
9 (n,s)+ 0 (J,Q/T) =0,
Oen’ + 0T = FiJ; — T’ — k3G’
Orda + 0i Sy, = —Q ¢ .



Constitutive relations

The only missing step is to provide constitutive relations for the
currents J;, Q;/T, TY and Jéa to first order in the gradients
expansion around the equilibrium configuration T + 6T, p+ du:
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e Transport coefficients

e Susceptibilities



Constraints

Typical constraints for charged fluid:
0'07/%07777er1207 ROUO_TO‘(%ZO-

Special to CDW: & > 0.
This subsequently leads to bounds on ;3 and ~»:
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We will assume ~y1 5 are small enough to be treated as
vanishing.

If we assume a relativistic covariant fixed point then
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The Martin-Kadanoff method

Having the modified EOMs and the constitutive relations one can
apply the Martin-Kadanoff procedure

e One can cast the EOMs in the following way (ga are the
relevant fields, s9 are the sources):

-,

Deqa(t, k) + Mg (k, B)sc(t, k) = xZsg(k) .

e The retarded Green's function can eventually be computed

— (I + o (=il + Mx 1) ™) x -



Conductivities at low B

e Taking the DC transport coefficients to lowest order in B:
2
O'o+5 + O(B )
: Ap _ pros & 4
> Magnetoresistance: =£ = B~ (a0+&)2 + O(B*).
» Thermal Hall conductivity:
Fixy = —BT‘%S (ns — 2k T ) +0(B%).

> Hall angle: cot®y = g 1+2¢0 + O(B).

» Nernst coefficient: N = %O’o( £)+0O(B?).
e DC conductivities are a sum of incoherent and relaxation

conductivities

» Charge resistivity: py =

n2 Ql

Eer—i-wg '

opc =09+ 06 with o=

e Only four variables og, &, n and s. But we measure five
observables - system overconstrained.



Determining the hydrodynamic variables

e What does experiment imply for our hydrodynamic
variables?

» Consistency requires pyx dominated by og at low T i.e.

1
Pxx ~ ~ Ta
0o

m e cot® n TS
H ™~ Bs ~ .
> Using Ap/p ~ T~* fixes
n~TY and &~ T°.
» Finally s is given through r,,
09 O

K}XyN,LLBTSNT_?’ = s~ T.

P s is in accordance with specific heat measurement on our
sample and on YBCO [Loram 1991]



Recovering the Nernst behavior
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e The Nernst coefficient behaves as

N ~ nBs ~ H ~ T725
nT T cotOp

e The temperature range where the scaling agrees is exactly the
one predicted from other principles (vortices at low T and
T,/2 at high T)



Outlook

e This is a consistency check of the validity of hydro
» We can not say anything on what is dominating & = need for
precision spectral measurements

» If hydro is valid down to low T the Drude to off-axes peak
should be explained within the same picture

e Other cuprates have different temperature scalings for the
transport coefficients (eg Hall angle and k,, in YBCO)
» CDW order is measured almost in every cuprates = try to find
a consistent picture

» |s hydro a valid description in different point of the phase
diagram?






